Improving Knowledge-aware Recommendation with Multilevel Interactive Contrastive Learning

Ding Zou

CCIIP Laboratory, Huazhong University of Science and Technology Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL) China

m202173662@hust.edu.cn

Xian-Ling Mao Beijing Institute of Technology China maoxl@bit.edu.cn Wei Wei*

CCIIP Laboratory, Huazhong University of Science and Technology Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL) China weiw@hust.edu.cn

Feida Zhu Singapore Management University Singapore fdzhu@smu.edu.sg

Dangyang Chen
Ping An Property & Casualty
Insurance company of China, Ltd
China
chendangyang273@pingan.com.cn

Ziyang Wang CCIIP Laboratory, Huazhong University of Science and Technology Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL)

China ziyang1997@hust.edu.cn

Rui Fang
Ping An Property & Casualty
Insurance company of China, Ltd
China
fangrui051@pingan.com.cn

(CIKM-2022) https://github.com/CCIIPLab/KGIC

Reported by Ke Gan

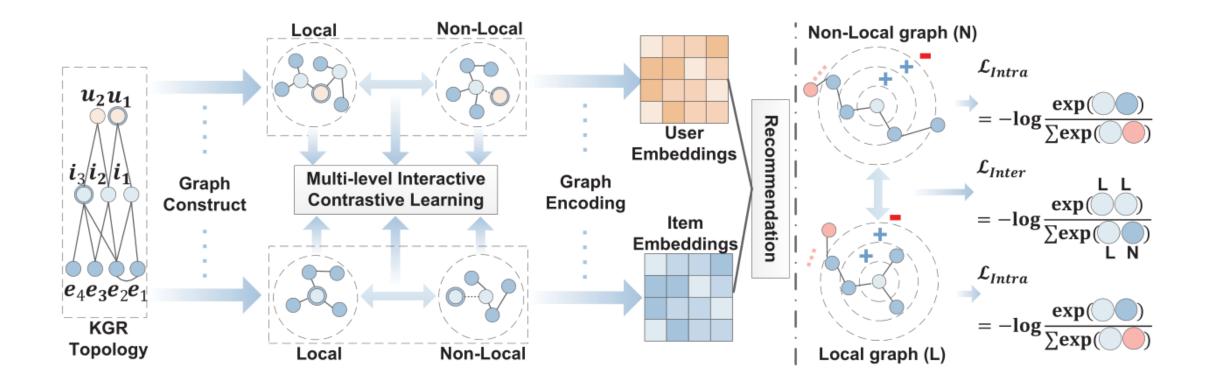
- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

Problem:

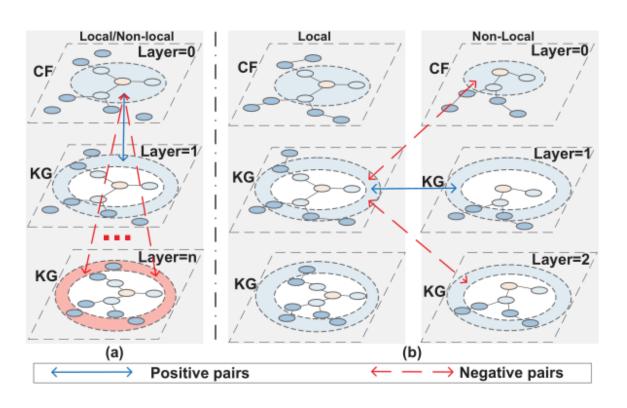
the GNN-based methods ignores the non-local KG facts (neighboring areas of similar items)

the combination of sparse interactions and redundant KG facts results in an unbalanced information utilization



$$\mathcal{U} = \{u_1, u_2, \dots, u_M\}$$
 $\mathbf{Y} \in \mathbf{R}^{M \times N}$ $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ $\mathcal{A} = \{(v, e) | v \in \mathcal{V}, e \in \mathcal{E}\}$

Introduction

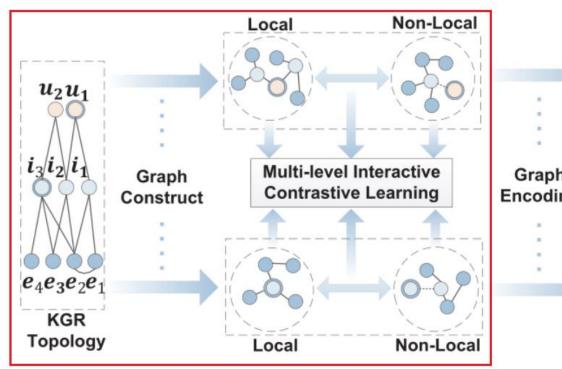


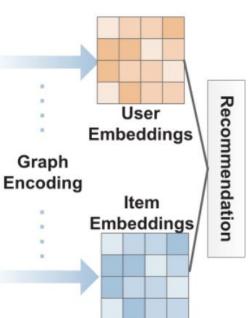
Intra-graph

unifying the CF and KG information, having a consistent and sufficient representation learning

Inter-graph

extract more informative KG signals





Local

$$\mathcal{E}_{u,L}^{0} = \{ e \mid (v, e) \in \mathcal{A}, \text{ and } v \in \{ v \mid y_{uv} = 1 \} \}, \\ \mathcal{E}_{v,L}^{0} = \{ e \mid (v, e) \in \mathcal{A} \},$$
 (1)

$$S_{o,L}^{l} = \{(h, r, t) \mid (h, r, t) \in \mathcal{G} \text{ and } h \in \mathcal{E}_{o,L}^{l-1} \}, l = 1, \dots, L,$$
 (2)

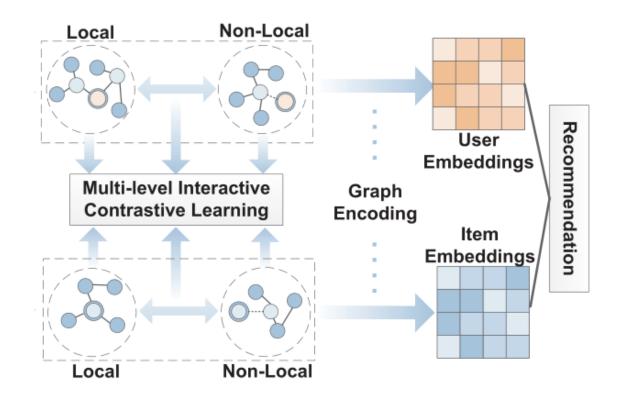
Non-Local

$$\mathcal{V}_{p} = \left\{ v_{p} \mid u \in \mathcal{U}_{\text{sim}}, \text{ and } y_{uv_{p}} = 1 \right\},
\mathcal{U}_{\text{sim}} = \left\{ u_{\text{sim}} \mid v \in \{v \mid y_{uv} = 1\} \text{ and } y_{u_{\text{sim}}} v = 1 \right\},
\mathcal{V}_{u} = \left\{ v_{u} \mid u \in \{u \mid y_{uv} = 1\} \text{ and } y_{uv_{u}} = 1 \right\},$$
(3)

$$\mathcal{E}_{u,N}^{0} = \left\{ e \mid (v_{p}, e) \in \mathcal{A}, \text{ and } v_{p} \in \mathcal{V}_{p} \right\},$$

$$\mathcal{E}_{v,N}^{0} = \left\{ e \mid (v_{u}, e) \in \mathcal{A}, \text{ and } v_{u} \in \mathcal{V}_{u} \right\}.$$
(4)

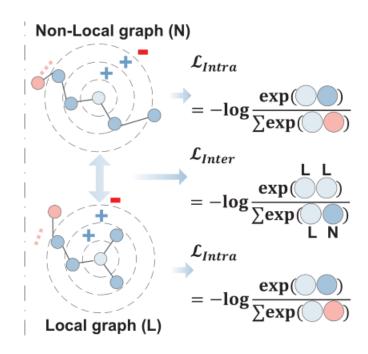
$$S_{o,N}^{l} = \{(h, r, t) \mid (h, r, t) \in \mathcal{G} \text{and} h \in \mathcal{E}_{o,N}^{l-1} \}, l = 1, \dots, L.$$
 (5)



$$\mathbf{E}_{o,D}^{l} = \sum_{i=1}^{m} \pi\left(e_{i}^{h}, r_{i}\right) e_{i}^{t},\tag{6}$$

$$\pi\left(e_{i}^{h}, r_{i}\right) = \sigma\left(W_{1}\left[\sigma\left(W_{0}\left(e_{i}^{h}||r_{i}\right) + b_{0}\right)\right] + b_{1}\right),$$

$$\pi\left(e_{i}^{h}, r_{i}\right) = \frac{\exp\left(\pi\left(e_{i}^{h}, r_{i}\right)\right)}{\sum_{(h', r', t') \in \mathcal{S}_{o, D}^{l}} \exp\left(\pi\left(e_{i}^{h'}, r_{i}'\right)\right)},$$
(7)



$$\mathcal{L}_{Inter} = \mathcal{L}_{Inter}^{U} + \mathcal{L}_{Inter}^{I}. \tag{11}$$

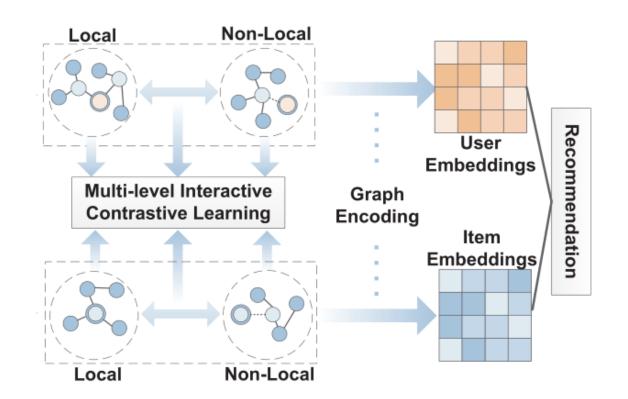
$$\mathcal{L}_{Intra}^{U} = \sum_{u \in \mathcal{U}} -\log \frac{\sum_{k \in L} e^{\left(\left(\mathbb{E}_{u,L}^{(0)} \cdot \mathbb{E}_{u,L}^{(k)}/\tau\right)\right)}}{\sum_{k \in L} e^{\left(\left(\mathbb{E}_{u,L}^{(0)} \cdot \mathbb{E}_{u,L}^{(k)}/\tau\right)\right)} + \sum_{k' > L} e^{\left(\left(\mathbb{E}_{u,L}^{(0)} \cdot \mathbb{E}_{u,L}^{(k')}/\tau\right)\right)}}$$

$$+ \sum_{u \in \mathcal{U}} -\log \frac{\sum_{k \in L} e^{\left(\left(\mathbb{E}_{u,N}^{(0)} \cdot \mathbb{E}_{u,N}^{(k)}/\tau\right)\right)} + \sum_{k' > L} e^{\left(\left(\mathbb{E}_{u,N}^{(0)} \cdot \mathbb{E}_{u,N}^{(k')}/\tau\right)\right)}}{\sum_{k \in L} e^{\left(\left(\mathbb{E}_{u,N}^{(0)} \cdot \mathbb{E}_{u,N}^{(k)}/\tau\right)\right)} + \sum_{k' > L} e^{\left(\left(\mathbb{E}_{u,N}^{(0)} \cdot \mathbb{E}_{u,N}^{(k')}/\tau\right)\right)}},$$
positive pair intra-graph negative pair intra-graph negative pair (8)

$$\mathcal{L}_{Intra} = \mathcal{L}_{Intra}^{U} + \mathcal{L}_{Intra}^{I}. \tag{9}$$

$$\mathcal{L}_{Inter}^{U} = \sum_{u \in \mathcal{U}} \sum_{k \in L} -\log \underbrace{\frac{e^{\left(\left(\mathbf{E}_{u,L}^{(k)} \cdot \mathbf{E}_{u,N}^{(k)}/\tau\right)\right)}}{e^{\left(\left(\mathbf{E}_{u,L}^{(k)} \cdot \mathbf{E}_{u,N}^{(k)}/\tau\right)\right)}}}_{\text{positive pair}} + \underbrace{\sum_{k' \neq k} e^{\left(\left(\mathbf{E}_{u,L}^{(k)} \cdot \mathbf{E}_{u,N}^{(k')}/\tau\right)\right)}}_{\text{positive pair}}.$$

inter-graph negative pair



$$\mathbf{e}_{u} = \mathbf{E}_{u,L}^{0} \| \dots \| \mathbf{E}_{u,L}^{L} \| \mathbf{E}_{u,N}^{0} \| \dots \| \mathbf{E}_{u,N}^{L},$$

$$\mathbf{e}_{i} = \mathbf{E}_{i,L}^{0} \| \dots \| \mathbf{E}_{i,L}^{L} \| \mathbf{E}_{i,N}^{0} \| \dots \| \mathbf{E}_{i,N}^{L},$$

$$\hat{\mathbf{y}}(u,i) = \mathbf{e}_{u}^{\top} \mathbf{e}_{i}.$$
(12)

$$\mathcal{L}_{BPR} = \sum_{(u,i,j)\in O} -\ln \sigma \left(\hat{\mathbf{y}}_{ui} - \hat{\mathbf{y}}_{uj}\right), \tag{13}$$

$$\mathcal{L}_{KGIC} = \mathcal{L}_{BPR} + \lambda 1(\alpha \mathcal{L}_{Intra} + \mathcal{L}_{Inter}) + \lambda 2||\Theta||_{2}^{2}, \quad (14)$$

		Book-Crossing	MovieLens-1N	1 Last.FM
User-item Interaction	# users	17,860	6,036	1,872
	# items	14,967	2,445	3,846
	# interactions	139,746	753,772	42,346
Knowledge Graph	# entities	77,903	182,011	9,366
	# relations	25	12	60
	# triplets	151,500	1,241,996	15,518
Hyper-	# η	4×10^{-3}	4×10^{-3}	4×10^{-3}
parameter	# \(\lambda\)1	1×10^{-6}	1×10^{-7}	1×10^{-6}
Settings	# λ2	1×10^{-4}	1×10^{-5}	1×10^{-4}

Table 1: Statistics and hyper-parameter settings for the three datasets. (η : learning rate, λ 1: constrastive loss weight, λ 2: L2 regularizer weight.)

Model	Book-Crossing		MovieLens-1M		Last.FM	
	AUC	F1	AUC	F1	AUC	F1
BPRMF	0.6583(-11.66%)	0.6117(-6.95%)	0.8920(-3.32%)	0.7921(-6.38%)	0.7563(-10.29%)	0.7010(-7.43%)
CKE	0.6759(-9.90%)	0.6235(-5.77%)	0.9065(-1.87%)	0.8024(-5.35%)	0.7471(-11.21%)	0.6740(-10.13%)
RippleNet	0.7211(-5.38%)	0.6472(-3.40%)	0.9190(-0.62%)	0.8422(-1.37%)	0.7762(-8.30%)	0.7025(-7.28%)
PER	0.6048(-17.01%)	0.5726(-10.86%)	0.7124(-21.28%)	0.6670(-18.89%)	0.6414(-21.78%)	0.6033(-17.20%)
KGCN	0.6841(-9.08%)	0.6313(-4.99%)	0.9090(-1.62%)	0.8366(-1.93%)	0.8027(-5.65%)	0.7086(-6.67%)
KGNN-LS	0.6762(-9.87%)	0.6314(-4.98%)	0.9140(-1.12%)	0.8410(-1.49%)	0.8052(-5.40%)	0.7224(-5.29%)
KGAT	0.7314(-4.35%)	0.6544(-2.68%)	0.9140(-1.12%)	0.8440(-1.19%)	0.8293(-2.99%)	0.7424(-3.29%)
CKAN	0.7420(-3.29%)	0.6671(-1.41%)	0.9082(-1.70%)	0.8410(-1.49%)	0.8418(-1.74%)	0.7592(-1.61%)
KGIN	0.7273(-4.76%)	0.6614(-1.98%)	0.9190(-0.62%)	0.8441(-1.18%)	0.8486(-1.06%)	0.7602(-1.51%)
CG-KGR	0.7498(-2.51%)	0.6689(-1.23%)	0.9110(-1.42%)	$\overline{0.8359}(-2.00\%)$	0.8336(-2.56%)	$\overline{0.7433}(-3.20\%)$
KGIC	0.7749*	0.6812*	0.9252*	0.8559*	0.8592*	0.7753*

Table 2: The result of AUC and F1 in CTR prediction. The best results are in boldface and the second best results are underlined. * denotes statistically significant improvement by unpaired two-sample t-test with p < 0.001.

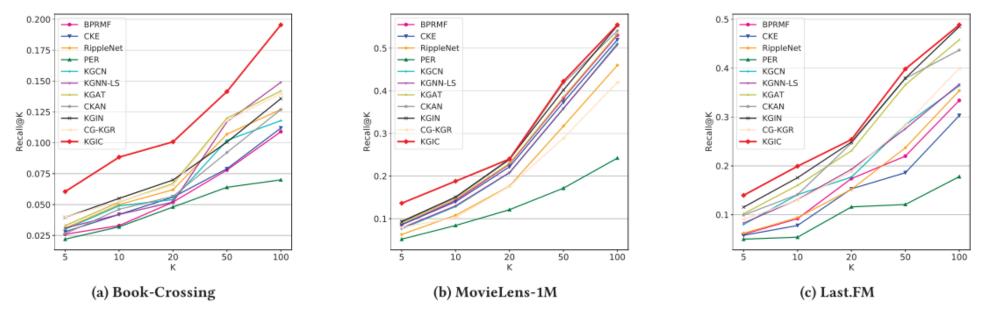


Figure 3: The result of Recall@K in top-K recommendation.

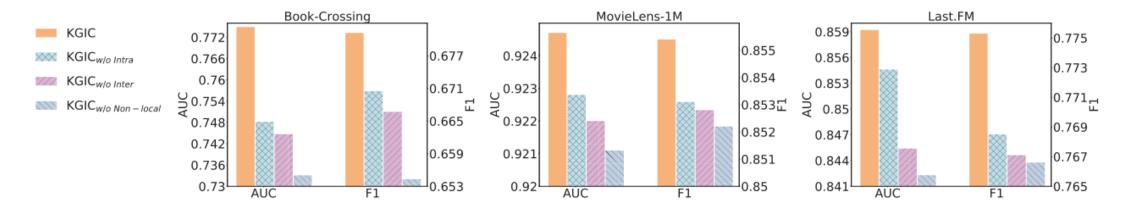


Figure 4: Effect of ablation study.

	Book		Movie		Music	
	Auc	F1	Auc	F1	Auc	F1
L=1	0.7749	0.6812	0.9241	0.8551	0.8482	0.7692
L=2	0.7689	0.6705	0.9252	0.8559	0.8592	0.7753
L=3	0.7513	0.6718	0.9203	0.8521	0.8511	0.7694

Table 3: Impact of model depth.

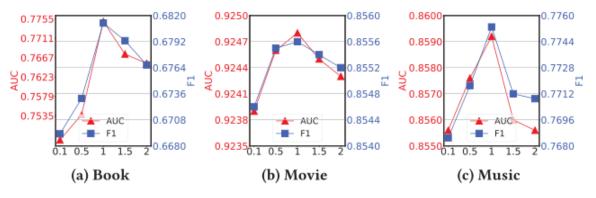


Figure 5: Impact of coefficient α .

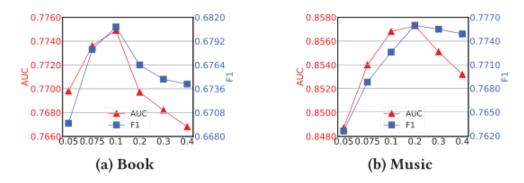


Figure 6: Impact of temperature τ

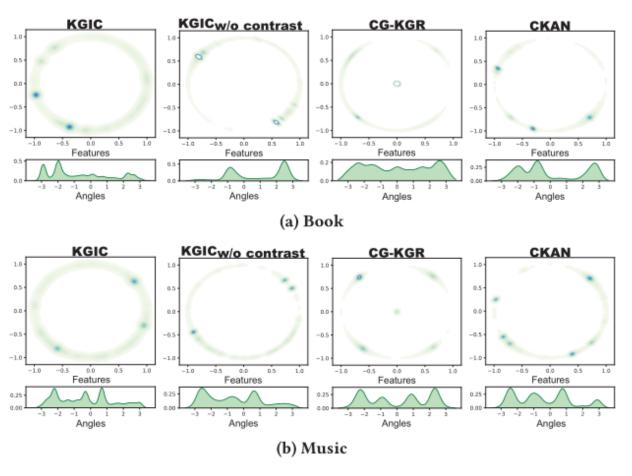


Figure 7: Visualization for the distribution of item embeddings.

Thank you!